Cartílago articular: estructura, patologías y campos eléctricos como alternativa terapéutica. Revisión de conceptos actuales

Autores/as

  • Juan Jairo Vaca-González Universidad Nacional de Colombia. Bogotá, Colombia
  • María Lucía Gutiérrez Universidad Nacional de Colombia. Bogotá, Colombia
  • Diego Alexánder Garzón-Alvarado Universidad Nacional de Colombia. Bogotá, Colombia

DOI:

https://doi.org/10.1016/j.rccot.2017.06.002

Palabras clave:

cartílago articular, condrocito, campo eléctrico, cultivo celular, colágeno, agrecano

Resumen

Las patologías degenerativas que ocasionan daños morfológicos, moleculares y biomecánicos en el cartílago articular conducen a una reorganización bioquímica de la matriz extracelular, a la vez que alteran las moléculas principales, como el colágeno de tipo II y el agrecano. En busca de opciones terapéuticas, los campos eléctricos han sido una herramienta utilizada para tratar las patologías asociadas con el cartílago articular. Estos aumentan la viabilidad celular y estimulan la proliferación y expresión génicas de proteínas como el colágeno de tipo II y la proteína central del agrecano. Esta revisión resalta tanto la morfofisiología, como las patologías y los tratamientos del cartílago articular, y destaca la importancia del uso de los campos eléctricos como un estímulo para los condrocitos articulares cultivados en monocapa. En conclusión, se muestra que los campos eléctricos aumentan la viabilidad celular y estimulan la proliferación y síntesis de las principales moléculas de la matriz extracelular del cartílago. Esto tiene implicaciones desde el punto de vista terapéutico para futuras aplicaciones tanto en la ingeniería de tejidos como en la medicina regenerativa.
Nivel de evidencia clínica. Nivel IV.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Juan Jairo Vaca-González, Universidad Nacional de Colombia. Bogotá, Colombia

Ingeniero en automatización, Facultad de Medicina, Instituto de Biotecnología-Laboratorio de Biomiméticos, Universidad Nacional de Colombia, Bogotá, Colombia.

María Lucía Gutiérrez, Universidad Nacional de Colombia. Bogotá, Colombia

Profesora, Pontificia Universidad Javeriana, Grupo de Modelado y Métodos Numéricos (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia.

Diego Alexánder Garzón-Alvarado, Universidad Nacional de Colombia. Bogotá, Colombia

Profesor titular, Grupo de Modelado y Métodos Numéricos (GNUM), Instituto de Biotecnología-Laboratorio de Biomiméticos, Universidad Nacional de Colombia, Bogotá, Colombia.

Referencias bibliográficas

Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull. 2008;87:77-95. https://doi.org/10.1093/bmb/ldn025

Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun. 2002;290:763-9. https://doi.org/10.1006/bbrc.2001.6270

Mueller MB, Tuan RS. Anabolic/Catabolic balance in pathogenesis of osteoarthritis: identifying molecular targets. PM & R. 2011;3 6 Suppl 1:S3-11. https://doi.org/10.1016/j.pmrj.2011.05.009

Salud CD. GuíTa de referencia de atención en medicina general: Osteoartritis. Manual de Calidad. 2012;1:1-18.

Farr J, Mont MA, Garland D, Caldwell JR, Zizic TM. Pulsed electrical stimulation in patients with osteoarthritis of the knee: follow up in 288 patients who had failed non-operative therapy. Surg Technol Int. 2006;15:227-33.

Kuettner KE, Pauli BU, Gall G, Memoli VA, Schenk RK. Synthesis of cartilage matrix by mammalian chondrocytes in vitro, I. Isolation, culture characteristics, and morphology. J Cell Biol. 1982;93:743-50. https://doi.org/10.1083/jcb.93.3.743

Meyer U. The history of tissue engineering and regenerative medicine in perspective. En: Meyer U, Handschel J, Wiesmann HP, et al., editores. Fundamentals of tissue engineering and regenerative medicine. Berlin-Heidelberg: Springer; 2009. p. 5-12. https://doi.org/10.1007/978-3-540-77755-7_1

Nerem RM. The challenge of imitating nature. En: Lanza R, Langer R, Vacanti J, editores. Principles of tissue engineering. Third Edition Burlington: Academic Press; 2007. p. 7-14. https://doi.org/10.1016/B978-012370615-7/50006-8

Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials. 2000;21:431-40. https://doi.org/10.1016/S0142-9612(99)00213-6

Yen YM, Cascio B, O'Brien L, Stalzer S, Millett PJ, Steadman JR. Treatment of osteoarthritis of the knee with microfracture and rehabilitation. Med Sci Sports Exerc. 2008;40:200-5. https://doi.org/10.1249/mss.0b013e31815cb212

Armstrong PF, Brighton CT, Star AM. Capacitively coupled electrical stimulation of bovine growth plate chondrocytes grown in pellet form. J Orthop Res. 1988;6:265-71. https://doi.org/10.1002/jor.1100060214

Baker B, Spadaro J, Marino A, Becker RO. Electrical stimulation of articular cartilage regeneration. Ann N Y Acad Sci. 1974;238:491-9. https://doi.org/10.1111/j.1749-6632.1974.tb26815.x

Brighton CT, Jensen L, Pollack SR, Tolin BS, Clark CC. Proliferative and synthetic response of bovine growth plate chondrocytes to various capacitively coupled electrical fields. J Orthop Res. 1989;7:759-65. https://doi.org/10.1002/jor.1100070519

Brighton CT, Townsend PF. Increased cAMP production after short-term capacitively coupled stimulation in bovine growth plate chondrocytes. J Orthop Res. 1988;6:552-8. https://doi.org/10.1002/jor.1100060412

Brighton CT, Unger AS, Stambough JL. In vitro growth of bovine articular cartilage chondrocytes in various capacitively coupled electrical fields. J Orthop Res. 1984;2:15-22. https://doi.org/10.1002/jor.1100020104

Brighton CT, Wang W, Clark CC. Up-regulation of matrix in bovine articular cartilage explants by electric fields. Biochem Biophys Res Commun. 2006;342:556-61. https://doi.org/10.1016/j.bbrc.2006.01.171

Brighton CT, Wang W, Clark CC. The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants. J Bone Joint Surg Am. 2008;90:833-48. https://doi.org/10.2106/JBJS.F.01437

Nakasuji S, Morita Y, Tanaka K, Tanaka T, Nakamachi E. Effect of pulse electric field stimulation on chondrocytes. Asian Pacific Conference for Materials and Mechanics. 2009.

Rodan GA, Bourret LA, Norton LA. DNA synthesis in cartilage cells is stimulated by oscillating electric fields. Science. 1978;199:690-2. https://doi.org/10.1126/science.625660

Wang W, Wang Z, Zhang G, Clark CC, Brighton CT. Up-regulation of chondrocyte matrix genes and products by electric fields. Clin Orthop Relat Res. 2004; 427 Suppl:S163-73. https://doi.org/10.1097/01.blo.0000143837.53434.5c

Cowin SC, Doty SB. Tissue Mechanics. New York: Springer; 2007. https://doi.org/10.1007/978-0-387-49985-7

Liebman J, Goldberg RL. Chondrocyte culture and assay. Curr Protoc Pharmacol. 2001. Chapter 12: Unit 12. https://doi.org/10.1002/0471141755.ph1202s12

Coburn JM, Gibson M, Monagle S, Patterson Z, Elisseeff JH. Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proc Natl Acad Sci U S A. 2012;109: 10012-7. https://doi.org/10.1073/pnas.1121605109

Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol. 2009;25:629-48. https://doi.org/bj7xn3

Hall BK, Miyake T. All for one and one for all: condensations and the initiation of skeletal development. Bioessays. 2000;22:138-47.

Bobick BE, Kulyk WM. Regulation of cartilage formation and maturation by mitogen-activated protein kinase signaling. Birth Defects Res C Embryo Today. 2008;84:131-54. https://doi.org/10.1002/bdrc.20126

Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423:332-6. https://doi.org/10.1038/nature01657

Cole BJ, Malek MM. Articular cartilage lesions: A practical guide to assessment and treatment. New York: Springer; 2004. https://doi.org/10.1007/978-0-387-21553-2

Ballock RT, O'Keefe RJ. The biology of the growth plate. J Bone Joint Surg Am. 2003;85-A:715-26. https://doi.org/10.2106/00004623-200304000-00021

Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Developmental cell. 2002;2:389-406. https://doi.org/10.1016/S1534-5807(02)00157-0

Davies SR, Sakano S, Zhu Y, Sandell LJ. Distribution of the transcription factors Sox9, -2, and [delta]EF1 in adult murine articular and meniscal cartilage and growth plate. J Histochem Cytochem. 2002;50:1059-65. https://doi.org/10.1177/002215540205000808

Erggelet C, Mandelbaum BR, Mrosek EH, Scopp JM. Articular cartilage biology. Principles of cartilage repair. Heidelberg, Steinkopff, Berlin: Springer; 2008. p. 3-5.

Quintero M, Monfort J, Mitrovic DR. Osteoartrosis: biología, fisiopatología, clínica y tratamiento. Madrid: Médica Panamericana; 2009.

Athanasiou KA, Darling EM, Hu JC. Articular cartilage tissue engineering. Synthesis Lectures on Tissue Engineering. 2009;1:1-182. https://doi.org/10.2200/S00212ED1V01Y200910TIS003

Álvarez LA, Casanova MC, García LY. Fisiopatología, clasificación y diagnóstico de la osteoartritis de rodilla. Revista Cubana de Ortopedia y Traumatología. 2004;18:41-6.

Sandell LJ, Morris N, Robbins JR, Goldring MB. Alternatively spliced type II procollagen mRNAs define distinct populations of cells during vertebral development: differential expression of the amino-propeptide. J Cell Biol. 1991;114:1307-19. https://doi.org/10.1083/jcb.114.6.1307

Chen FH, Rousche KT, Tuan RS. Technology Insight: adult stem cells in cartilage regeneration and tissue engineering. Nat Clin Pract Rheumatol. 2006;2:373-82. https://doi.org/10.1038/ncprheum0216

Sandell LJ, Nalin AM, Reife RA. Alternative splice form of type II procollagen mRNA (IIA) is predominant in skeletal precursors and non-cartilaginous tissues during early mouse development. Dev Dyn. 1994;199:129-40. https://doi.org/10.1002/aja.1001990206

Schwartz N. Biosynthesis and regulation of expression of proteoglycans. F Front Biosci. 2000;5:D649-55. https://doi.org/10.2741/A540

Dudhia J. Aggrecan, aging and assembly in articular cartilage. Cell Mol Life Sci. 2005;62:2241-56. https://doi.org/10.1007/s00018-005-5217-x

Hedbom E, Antonsson P, Hjerpe A, Aeschlimann D, Paulsson M, Rosa-Pimentel E, et al. Cartilage matrix proteins, An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem. 1992;267:6132-6. https://doi.org/10.1016/S0021-9258(18)42671-3

DiCesare PE, Mörgelin M, Mann K, Paulsson M. Cartilage oligomeric matrix protein and thrombospondin 1, Purification from articular cartilage, electron microscopic structure, and chondrocyte binding. Eur J Biochem. 1994;223:927-37. https://doi.org/10.1111/j.1432-1033.1994.tb19070.x

Eleswarapu SV, Leipzig ND, Athanasiou KA. Gene expression of single articular chondrocytes. Cell Tissue Res. 2007;327:43-54. https://doi.org/10.1007/s00441-006-0258-5

Poole CA. Articular cartilage chondrons: form, function and failure. J Anat. 1997;191:1-13 (Pt 1). https://doi.org/10.1046/j.1469-7580.1997.19110001.x

Ross MH, Pawlina W. Histología: Texto y Atlas color con Biología Celular y Molecular. Buenos Aires: Médica Panamericana; 2008.

Aroen A, Loken S, Heir S, Ekeland A, Granlund OG, Engebretsen L. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med. 2004;32:211-5. https://doi.org/10.1177/0363546503259345

Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13:456-60. https://doi.org/10.1016/S0749-8063(97)90124-9

Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 2008;58:15-25. https://doi.org/10.1002/art.23177

Rojas DC, Bejarano BM. Los usuarios con osteoartrosis de rodilla, UNISALUD, Colombia: una mirada desde la epidemiología crítica. Medicina Social. 2010;5:203-14.

Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ. 2003;81:646-56.

Seed SM, Dunican KC, Lynch AM. Osteoarthritis: a review of treatment options. Geriatrics. 2009;64:20-9.

Moskowitz R, Altman R, Buckwalter JA, Goldberg VM, Hochberg MC. Osteoarthritis: Diagnosis and medical-surgical management. Philadelphia: Lippincott, Williams and Willkins; 2007.

Martel-Pelletier J, Boileau C, Pelletier JP, Roughley PJ. Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol. 2008;22:351-84. https://doi.org/10.1016/j.berh.2008.02.001

Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, MainilVarlet P. Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev. 2006;58:300-22. https://doi.org/10.1016/j.addr.2006.01.012

Sánchez Blanco I. Manual SERMEF de Rehabilitación y Medicina Física. Madrid: Médica Panamericana; 2006.

Tipler PA, Mosca G. Física para la ciencia y la tecnología: Electricidad y Magnetismo. Barcelona: Reverté; 2007.

Balint R, Cassidy NJ, Cartmell SH. Electrical stimulation: a novel tool for tissue engineering. Tissue engineering Part B, Reviews. 2013;19:48-57. https://doi.org/10.1089/ten.teb.2012.0183

Eyre D. Collagen of articular cartilage. Arthritis Res. 2002;4:30-5. https://doi.org/10.1186/ar380

Descargas

Publicado

2017-07-27

Cómo citar

1.
Vaca-González JJ, Gutiérrez ML, Garzón-Alvarado DA. Cartílago articular: estructura, patologías y campos eléctricos como alternativa terapéutica. Revisión de conceptos actuales. Rev. colomb. ortop traumatol. [Internet]. 27 de julio de 2017 [citado 23 de abril de 2024];31(4):202-10. Disponible en: https://revistasccot.org/index.php/rccot/article/view/344

Número

Sección

Artículo original
QR Code